Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst
نویسندگان
چکیده
The iridium complex [Cp*Ir(H2O)3](SO4) was used as an organometallic source for the electrodeposition of iridium oxide onto Fe2O3. The new iridium-containing electrode allowed us to study the coupling between the photocatalytic properties of hematite and the electrocatalytic properties of the iridium-based material. A cathodic shift of the photocurrent for water oxidation upon electrodeposition of the iridium complex was observed, which increased with increasing surface concentration of IrOx on Fe2O3. The shift for the highest surface concentration of iridium tested amounts to 300 mV at 200 μA·cm−2 current density. The catalytic mechanism of the IrOx layer was unveiled by impedance spectroscopy measurements fitted to a physical model and can be explained on the basis of a highly capacitive layer, which enhances charge separation and stores photogenerated holes at Fe2O3, subsequently oxidizing water. These findings improve our understanding of the mechanism of water oxidation by heterogeneous Ir-based catalysts coupled to semiconductor electrodes.
منابع مشابه
A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.
We report a mechanistic study of the catalytic effect of Ni(OH)2 on hematite nanowires for photoelectrochemical water oxidation. Ni compounds have been shown to be good catalysts for electrochemical and photoelectrochemical water oxidation. While we also observed improved photocurrents for Ni-catalyst decorated hematite photoanodes, we found that the photocurrents decay rapidly, indicating the ...
متن کاملHematite photoanodes modified with an Fe(III) water oxidation catalyst.
Hematite photoelectrodes prepared via a hydrothermal route are functionalized with a water oxidation catalyst consisting of amorphous Fe(III) oxide, obtained by successive ionic layer adsorption and reaction. The performances of the catalyst-modified photoanodes are considerably higher than those of the parent electrodes, resulting in a nearly doubled photoanodic current in all the basic aqueou...
متن کاملDirect in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite
Electrocatalysts improve the efficiency of light-absorbing semiconductor photoanodes driving the oxygen evolution reaction, but the precise function(s) of the electrocatalysts remains unclear. We directly measure, for the first time, the interface carrier transport properties of a prototypical visible-light-absorbing semiconductor, α-Fe2O3, in contact with one of the fastest known water oxidati...
متن کاملEnergetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier.
The design of optimal interfaces between photoelectrodes and catalysts is a key challenge in building photoelectrochemical cells to split water. Iridium dioxide (IrO2) is an efficient catalyst for oxygen evolution, stable in acidic conditions, and hence a good candidate to be interfaced with photoanodes. Using first-principles quantum mechanical calculations, we investigated the structural and ...
متن کاملImproving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator.
Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very ...
متن کامل